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50 We explored a range of potential low and high frequency environmental drivers of fishery 

51 production (landings) and catch-per-unit-effort (CPUE) for northern and southern stocks of 

52 golden tilefish (Lopholatilus chamaeleonticeps), a stenothermic species that prefers a narrow 

53 band of habitat along the continental shelf and upper slope of the eastern U.S. Random forest 

54 regression, a machine learning technique, was used to examine the impact of numerous and 

55 sometimes correlated environmental covariates. We used important random forest covariates to 

56 inform construction of a more parsimonious generalized additive mixed model for each data type 

57 and stock. We identified several potential environmental drivers of golden tilefish fishery and 

58 stock dynamics, including low frequency climate indices, oceanographic currents, and high 

59 frequency oceanographic conditions. Both Atlantic Multidecadal Oscillation (AMO) and North 

60 Atlantic Oscillation indices were associated with historical golden tilefish landings for the 

61 northern stock spanning 1915–2000 at lags of 7 and 3–4 years, respectively. CPUE for both 

62 stocks (north: 1995–2017, south: 1994–2018) was associated with the AMO and oceanographic 

63 currents. In addition, northern stock CPUE was negatively related to Labrador Current flow and 

64 positively related to northerly position of the Gulf Stream. Southern stock CPUE was associated 

65 with seasonal Florida Current transport, monthly sea surface temperatures, and latitude. 

66 Oceanographic currents and water temperature primarily influenced within-year CPUE, 

67 indicating a potential effect on adult fish or fisher behavior. In contrast, low frequency climate 

68 indices were associated with CPUE and landings at lags of 3–7 years, indicating their primary 

69 impact was on recruitment strength.

70
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78 Identifying environmental factors that drive fluctuations in fish catches and catch-per-unit-effort 

79 (CPUE) is one of the oldest goals of fisheries science (Smith, 1994). Continued interest in 

80 environmental influences is driven in part by a desire to improve stock assessment and provide 

81 more accurate advice for management. Understanding the relationship between ecosystem 

82 conditions and fishery production or CPUE has been shown, in certain circumstances, to enhance 

83 our ability to generate more accurate population hindcasts and forecasts for fisheries 

84 management (Fu et al., 2012; Fu et al., 2015; Gaichas, Bundy, Miller, Moksness, & Stergiou, 

85 2012; Haltuch & Punt, 2011). Important environmental drivers of fishery processes include 

86 either high frequency (seasonal) conditions or low frequency (long-term) climate patterns and 

87 directional climate change (Hollowed et al., 2013; Tommasi, Stock, Hobday, et al., 2017; 

88 Tommasi, Stock, Pegion, et al., 2017). Although similar environmental drivers have been found 

89 to be influential across a range of species, key drivers are generally system-specific (Link et al., 

90 2012).

91 Both low and high frequency environmental drivers have been hypothesized to impact the 

92 population dynamics and fishery catches of the northern and southern stocks of golden tilefish 

93 (Lopholatilus chamaeleonticeps) along the U.S. East Coast in the Northwest Atlantic (Figure 1; 

94 Barans & Stender, 1993; Grimes, Able, & Jones, 1986; Grimes, Able, & Turner, 1980; Marsh et 

95 al., 1999). Golden tilefish is thought to be particularly susceptible to environmental fluctuations 

96 given it is a stenothermic species that prefers a narrow band of habitat along the continental shelf 

97 and upper slope that is 9–14˚C and 80–305 m deep (Able, Grimes, Jones, & Twichell, 1993; 

98 Grimes et al., 1986; Grimes & Turner, 1999). In particular, the northern stock has been identified 

99 as being highly vulnerable to climate change (Hare et al., 2016). An example of the northern 

100 stock’s potential susceptibility to environmental conditions was the 1882 die-off in which 

101 millions of golden tilefish died in a sudden and extensive mortality event (Bumpus, 1899; 

102 Collins, 1884). Marsh et al. (1999) suggested this die-off was the result of an extreme negative 

103 North Atlantic Oscillation (NAO) anomaly in 1881 that caused the intrusion of cold, subarctic 

104 water along the southern New England-Mid Atlantic shelf in the following year (Fisher, Frank, 

105 Petrie, & Leggett, 2014; Marsh et al., 1999). To address this hypothesis, Fisher et al. (2014) 

106 correlated historical northern landings of golden tilefish with the NAO and shelf slope water 

107 temperature anomalies and found a significant positive lagged correlation between landings and 

108 both the NAO (lags of 4–7 years) and bottom water temperature (lags of 3–4 years). However, 
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109 this relationship broke down following development of the modern longline fishery in the mid-

110 1970s, and Fisher et al. (2014) suggested that changes in fishing effort may have masked the 

111 detection of environmental impacts on tilefish landings as has been observed for other stocks 

112 (Drinkwater & Myers, 1987; Myers, 1998).

113 High frequency variation in bottom temperature along the Southern New England shelf 

114 has also been suggested as a driver of fishery dynamics for the northern golden tilefish stock. 

115 Seasonal cooling is thought to force tilefish to concentrate as the narrow band they inhabit along 

116 the upper continental shelf is reduced in spring (Grimes et al., 1986; Grimes et al., 1980). In the 

117 1970s when the stock was relatively lightly exploited, fishers were known to target spring tilefish 

118 aggregations, producing relatively high CPUE that may not be proportional to overall abundance 

119 (Grimes et al., 1980). Such temperature-driven fisher behavior could be problematic for golden 

120 tilefish stock assessment. If CPUE is indicative of environmentally-driven changes in fisher 

121 success rather than abundance trends, the resulting fishery-dependent CPUE index will not be 

122 proportional to population abundance. In the absence of a long-term fishery-independent survey 

123 that reliably catches golden tilefish, both stock assessments rely exclusively (northern) or heavily 

124 (southern) on fishery-dependent CPUE trends as indices of abundance (Nesslage, 2016; 

125 Nitschke, 2017), making assessment results susceptible to bias if the impact of environmental 

126 drivers on fisher behavior affects the ability of the index to reflect trends in population 

127 abundance.

128 Less is known about environmental impacts on the southern stock of golden tilefish. 

129 Spawning females have been found at temperatures in the narrow band of 10.16–14.90°C off the 

130 Carolinas (Sedberry, Pashuk, Wyanski, Stephen, & Weinbach, 2006). Also, fishery-independent 

131 CPUE was found to increase across a temperature range of 9–15˚C in waters off South Carolina 

132 and Georgia (Barans & Stender, 1993; Low, Ulrich, & Blum, 1983). However, golden tilefish 

133 die-off events have not been observed in the southeastern U.S., and the extent to which climate 

134 fluctuations drive dynamics of the southern stock is unknown.

135 In this study, we comprehensively explored a range of potential low and high frequency 

136 environmental drivers of golden tilefish fishery production and CPUE for both the northern and 

137 southern stocks. Our objectives were to: 1) identify the best low frequency environmental 
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138 predictors of golden tilefish landings, and 2) identify the primary environmental factors (both 

139 low and high frequency) related to golden tilefish CPUE.

140

141 2. METHODS

142 We used random forest regression (RF; Breiman, 2001; Hastie, Tibshirani, & Friedman, 2009) to 

143 explore a wide range of environmental factors that might explain long-term trends in golden 

144 tilefish landings and CPUE. RF allowed us to examine the impact of numerous and sometimes 

145 similar or correlated covariates. We then used the results of the RF to inform construction of a 

146 more parsimonious generalized additive mixed model (GAMM; S. Wood, 2006; Zuur, Ieno, 

147 Walker, Saveliev, & Smith, 2009). Environmental drivers of total historical landings were 

148 examined for the northern stock to expand directly upon the work of Fisher et al. (2014); the 

149 landings time series for the southern stock was too short to conduct a similar analysis. We also 

150 identified important environmental drivers of CPUE for both stocks to account for the impact of 

151 changes in fishery effort on landings trends (Harley, Myers, & Dunn, 2001; Pauly, Hilborn, & 

152 Branch, 2013). Compiled data and analysis R code are freely available on GitHub 

153 (https://github.com/vlyubchich/tilefish; Lyubchich & Nesslage, 2020) for the golden tilefish 

154 landings analysis. Commercial CPUE data used in this study are confidential at the 

155 spatiotemporal level analyzed and thus cannot be made publicly available.

156 2.1. Data sources

157 A time series of historical landings for the northern stock was constructed by summing 

158 commercial pounds landed annually across all gears from 1915 to 2017 (Nitschke, 2017). We did 

159 not include recreational data in this analysis because recreational removals are a very minor 

160 component of the overall catch and a reliable catch series could not be generated for the northern 

161 stock (NEFSC, 2014). Data from 2001–2017 were removed from the analysis to exclude the 

162 period in which landings were quota-limited. A comparably long time series of historical 

163 landings was not available for the southern stock given the fishery began in the mid-1970s 

164 (SEDAR, 2011).

165 CPUE for the northern stock was defined as pounds kept divided by days at sea (minus 

166 one day of steam time) using data collected from bottom longline Fishing Vessel Trip Reports 
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167 spanning 1995–2017 (Nitschke, 2017). For the southern stock, CPUE was defined as gutted 

168 weight in pounds landed divided by days at sea using data collected from the bottom longline 

169 fishery’s Coastal Fisheries Logbook Program spanning 1994–2018 (Nesslage, 2016). All CPUE 

170 data were aggregated on a monthly basis by National Marine Fisheries Service (NMFS) 

171 statistical area (Figure 1). We focused solely on analysis of longline sector CPUE data for three 

172 reasons: 1) longlines are the primary gear used in both northern and southern fisheries (mean 

173 >90% longline) during the extent of the available CPUE time series, and 2) the northern longline 

174 fishery is dedicated to tilefish and actively targets them, whereas most other commercial catch is 

175 bycatch in the trawl fishery, and 3) the southern handline fishery is quite small and does not have 

176 adequate data to construct a time series of CPUE (Nesslage, 2016).

177 Our exploratory analysis identified right skewness of the landings and CPUE data. To 

178 make the data distributions more symmetric and to satisfy the assumption of normality of 

179 residuals in GAMMs, we applied square root transformation to all response variables. For 

180 consistency and ease of comparison across modeling approaches, the transformed versions of the 

181 response variables were also used in the random forests.

182 Multiple data sources were used to generate environmental covariates in both landings 

183 and CPUE analyses, including long-term climate indices, indices of oceanic currents, and 

184 observed ocean conditions (Table 1). For both stocks, two low frequency climate indices were 

185 explored, namely the NAO and the Atlantic Multidecadal Oscillation (AMO; Delworth, Zhang, 

186 & Mann, 2007; Knight, Allan, Folland, Vellinga, & Mann, 2005), also known as Atlantic 

187 Multidecadal Variability. The NAO was a primary factor for consideration given previously 

188 demonstrated linkages between this index of sea level pressure in the North Atlantic and northern 

189 golden tilefish landings (Appenzeller, Stocker, & Anklin, 1998; Fisher et al., 2014; J. W. Hurrell 

190 & Deser, 2010). To determine which form of the NAO index is most relevant for golden tilefish, 

191 we considered four versions of the index spanning either December to February (Fisher et al., 

192 2014) or December to April (Marsh et al., 1999) using both station- and principle component 

193 (PC)-based indices (J. Hurrell & National Center for Atmospheric Research Staff, 2020; National 

194 Center for Atmospheric Research Staff (Eds.), 2020). Station-based indices that extend back to 

195 the early 1900s were explored to mirror the northern stock landings analyses conducted by Fisher 
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196 et al. (2014); however, more commonly used PC-based indices were explored in analyses of the 

197 recent time series of CPUE for both northern and southern stocks. 

198 In addition to the NAO, we examined potential effects of the AMO, an index of 

199 detrended sea surface temperature (SST) anomalies averaged over the North Atlantic that is 

200 indicative of climate variability, based partially on the hypotheses of Marsh et al. (1999) and 

201 because many other species in the Northwest Atlantic have exhibited population fluctuations that 

202 are linked to broad-scale patterns in SST over time (Alheit et al., 2014; Auber, Travers-Trolet, 

203 Villanueva, & Ernande, 2015; Collie, Wood, & Jeffries, 2008). We considered annual AMO 

204 because this index had not been previously explored for tilefish as well as December to April 

205 AMO to span the time frame of NAO indices explored in previous tilefish studies 

206 (https://www.esrl.noaa.gov/psd/data/timeseries/AMO; Fisher et al., 2014; Marsh et al., 1999).

207 For analyses of CPUE in recent decades, a wider range of environmental data was 

208 available for inclusion in our analyses. First, we considered several metrics of oceanic currents as 

209 potential environmental drivers of CPUE (Table 1). Marsh et al. (1999) suggested that the 1882 

210 golden tilefish die-off event was the result of a sudden southward expansion of cold water 

211 transport via the Labrador Current coincident with a large negative NAO anomaly in the 

212 previous year. Therefore, we obtained quarterly indices of Labrador Current surface (200 m) 

213 volume transport along four TOPEX/Poseidon-Jason tracks spanning 1992 to 2013 for 

214 consideration in northern stock analyses (DFO Canada, 2019; Han & Li, 2008). Given the 

215 possible influence of oceanic transport on golden tilefish dynamics, we also explored several 

216 indices of Gulf Stream position and flow for the northern stock, including annual anomalies in 

217 the Gulf Stream’s position in the western North Atlantic (Northeast Fisheries Science Center, 

218 2020) and both annual and quarterly indices of Gulf Stream transport and position of the Gulf 

219 Stream north wall (positive values represent a more northerly position; Watelet, 2019; Watelet, 

220 Beckers, & Barth, 2017). For the southern stock, we considered a monthly index of daily mean 

221 transport in the Florida Current, the southernmost portion of the Gulf Stream System (Atlantic 

222 Oceanographic and Meteorological Laboratory Physical Oceanography Division, 2019). Finally, 

223 because golden tilefish are a demersal species, we also considered an index of annual average 

224 bottom temperature anomalies in the Mid-Atlantic Bight generated from data collected on 
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225 Northeast Fisheries Science Center surveys, 1977–present (Northeast Fisheries Science Center, 

226 2020), in the northern CPUE model.

227 High frequency environmental factors considered in our CPUE analyses were obtained 

228 from the International Comprehensive Ocean-Atmosphere Data Set (ICOADS; 

229 https://icoads.noaa.gov/) of surface marine products. Variables included SST and sea level 

230 pressure, vector wind northward and eastward components, and scalar wind. Data were averaged 

231 monthly across 1° latitude  1° longitude boxes and assigned to the nearest NMFS statistical ×

232 area. These data were included in our analyses in order to represent localized monthly sea 

233 conditions and capture the signature of seasonal and episodic phenomenon such as upwelling 

234 that may impact tilefish landings and CPUE. For the southern stock, bottom temperature data 

235 from South Carolina Department of Natural Resources’ Marine Resources Monitoring, 

236 Assessment, and Prediction (MARMAP) longline survey were considered; however, the 

237 spatiotemporal resolution of the data were not sufficient to inform our model.

238 In addition to environmental data, all analyses included a time block categorical variable 

239 to account for major changes in fishery prosecution and management over time. For the northern 

240 stock landings analysis, five time blocks were defined: 1) 1915–1920, the initial US Fisheries 

241 Commission campaign to expand the northern golden tilefish fishery (Freeman & Turner, 1977); 

242 2) 1921–1940, the early trawl fishery; 3) 1941–1945, overall cessation of the fishery during 

243 World War II; 4) 1946–1970, the post-WWII pre-modern fishery; and 5) 1971–2000, the modern 

244 longline fishery. For analysis of the shorter northern stock CPUE time series, two time blocks 

245 were defined: 1) 1995-2000, advent of the modern longline fishery, and 2) 2001-2017, longline 

246 fishery quota enacted thought the Mid-Atlantic Fishery Management Council’s Tilefish Fishery 

247 Management Plan (NEFSC, 2014). For analysis of CPUE in the southern fishery, two time 

248 blocks were defined: 1) 1994–2005, early period of the South Atlantic Fishery Management 

249 Council’s Snapper-Grouper Fishery Management Plan, and 2) 2006–2018, management period 

250 that included closures and quota reductions (SEDAR, 2011). 

251 CPUE models also included covariates for month and location of each NMFS statistical 

252 area. We used data from areas with at least 30 CPUE records in the analyzed period. For the 

253 northern stock CPUE, there were only three areas with adequate records given the centralized 

254 nature of the fishery; hence, we used a categorical variable “Area” to distinguish those locations. 
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255 For the southern stock CPUE, there were 20 areas with adequate records, enabling us to use 

256 latitude and longitude of the area centroids to model spatial patterns.

257 In addition to examining the impact of covariates on landings or CPUE in the same year 

258 (lag 0), we also explored a range of time lags for each covariate based on whether the 

259 hypothesized influence on tilefish dynamics was high or low frequency (Table 1). Low 

260 frequency covariates hypothesized to have long-term impacts on tilefish dynamics (e.g., climate 

261 indices like NAO; Fisher et al. 2014) were lagged by up to 7 years, representing the high end of 

262 ages typically selected by the fishery (Nitschke, 2018) and, thus, the maximum time frame in 

263 which we might expect to observe an impact in the commercial fishery data. We selected a 

264 shorter range of up to 3 years (i.e., time frame prior to age at first selection in fishery) for 

265 quarterly and monthly covariates representing hypothesized high frequency or short-term 

266 influences such as the Labrador Current and Gulf Stream indices. Covariates representing 

267 localized, short-term water conditions (e.g., monthly temperature, pressure, and wind metrics for 

268 each statistical area) were not lagged. Lagged covariates are indicated by the addition of 

269 parentheses “(t – X y/q/m)” with X representing the number of years, quarters, or months lagged, 

270 respectively.

271 2.2. Identifying environmental drivers using random forest regression

272 We used RF as the first step in variable selection and modeling (Breiman, 2001). To quantify 

273 uncertainty in the importance measure and describe the relative importance of a specific variable, 

274 we used two algorithms, Boruta (Kursa & Rudnicki, 2010) and Altmann et al. (2010), which 

275 have been shown to perform well in a variety of settings with correlated predictors (Degenhardt, 

276 Seifert, & Szymczak, 2019). Considering the large number of environmental covariates in our 

277 analysis, including their lagged versions, we treated environmental drivers as important only if 

278 they were selected by both Boruta and Altmann’s algorithms. For more details on RF 

279 construction, see Supplementary Materials. 

280

281 2.3. Statistical modeling of impact of environmental drivers on landings and CPUE

282 We used generalized additive models (GAMs) to generate more parsimonious statistical models 

283 of tilefish landings and CPUE. We used generalized additive models (GAMs) to generate more 
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284 parsimonious statistical models of tilefish landings and CPUE. Given a GAM with too many 

285 explanatory variables may be impractical or even numerically impossible (Section 5.7; S. Wood, 

286 2006; Zuur et al., 2009), a forward selection of relevant variables was implemented. One can add 

287 variables into a GAM based on their correlation with the response variable (strongest 

288 correlations first), but commonly used correlation coefficients measure strength of only linear 

289 (Pearson correlation coefficient) or monotonic (Spearman correlation coefficient) relationships, 

290 while GAMs allow us to model nonlinear and possibly nonmonotonic relationships, which would 

291 not be captured by Pearson or Spearman correlation. To match the GAM’s purpose of handling 

292 nonlinear relationships, we used preliminary estimates and particularly importance rankings of 

293 such relationships obtained from our RFs. RF estimates nonlinear relationships that can be 

294 modeled also with GAMs, and variable importance in an RF is similar to the variance 

295 decomposition method LMG (named after the authors Lindeman, Merenda, & and Gold, 1980; 

296 Grömping, 2015). LMG is used in statistical regression modeling and satisfies more 

297 requirements for relative importance metrics than pairwise correlations, magnitude of regression 

298 coefficients, or their t-statistics (Grömping, 2015). Hence, we leveraged variable importance 

299 information from random forests, an approach that has been shown to perform well in a variety 

300 of studies with large number of predictors (Genuer, Poggi, & Tuleau-Malot, 2010; Hapfelmeier 

301 & Ulm, 2013; Oldekop, Holmes, Harris, & Evans, 2016; Sandri & Zuccolotto, 2006). Our RF 

302 contained many more variables than were retained in the GAMs (Table 1); therefore, the RF-

303 based rankings allowed us to prioritize the examination of variables in a GAM, but did not 

304 restrict the selection pool considerably. 

305 We assessed the contribution of each variable in the final GAM using the Shapley–Owen 

306 decomposition (Hüttner & Sunder, 2011) of the GAM’s coefficient of determination (R2). The 

307 decomposition determines how much an addition of each variable improves the final R2. Since 

308 regressors are usually not perfectly independent, the calculations are repeated for all 

309 combinations of regressors xj (j = 1, …, p) in the model:

310 �2� = ∑� ⊆ �\{��} 

�!(� ― � ― 1)!�! [�2(� ∪ {��}) ― �2(�)],A
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311 where T is model with k regressors (k = 0, …, p – 1);  is the same model with regressor xj � ∪ {��}
312 included; Z is the set of all models with all combinations of regressors. We represent  as �2�
313 percentage of the final GAM’s R2.

314 2.4. Model assessment

315 We compared GAMM and RF models by assessing their predictive performance on a testing set, 

316 using known values of the predictors in the testing set. We assumed that better predictive 

317 performance (lower prediction error) corresponds with better ability of the model to capture 

318 underlying relationships between the fishery data and environmental covariates. 

319 For both southern and northern CPUE datasets, we used the training set extending up to 

320 2010 to select predictors and estimate model parameters, then generated forecasts for 2011 and 

321 beyond (i.e., the testing set). To compare true data in the testing set with forecasts, we calculated 

322 and compared prediction mean absolute error (PMAE) and prediction root mean square error 

323 (PRMSE). Let  be the forecast values in the testing set of size n, and  be the corresponding �� ��
324 real values, then

325 ���� =  �―1

�∑� = 1

|��―  ��|
326 ����� =  �―1

�∑� = 1

(��―  ��)2

327 PMAE scores the forecast errors linearly, using the absolute values. PRMSE squares the errors 

328 before averaging; hence, PMAE and PRMSE are similar when variance in errors is small, but 

329 PRMSE is more sensitive and can better detect error outliers. Low prediction errors correspond 

330 to more accurate forecasts. The variable selection and model estimation process was repeated on 

331 the full dataset to obtain final models.

332 Several aspects of the northern tilefish landings dataset restricted us from implementing 

333 the same model validation scheme as for CPUE. First, the landings dataset was relatively small; 

334 therefore, we used the whole dataset in the variable selection process to capture the impact of 

335 low-frequency covariates on the landings. Second, because this longer dataset included distinct 

336 time blocks represented by a categorical variable, we modified the validation routine to ensure 
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337 that a given time block was represented in both training and testing sets, and that the temporal 

338 order was preserved using the methods described in Supplementary Materials. 

339 Within the outlined validation schemes, we obtained two types of forecasts from 

340 GAMMs: from the GAM part only by setting the random effects to zero, and from the full 

341 GAMM by additionally forecasting the AR(1) errors. For the latter type of forecasts, the last 

342 observed error is needed to calculate each new forecast; hence, such forecasts are essentially 

343 short-term, one-step-ahead, forecasts and their quality can be expected to be higher than that of 

344 GAMs.

345

346 3. RESULTS

347 We found that northern landings and CPUE models differed with respect to the significant 

348 covariates identified by RF regression models and GAMMs (Table 1). In addition, CPUE models 

349 generated for the northern stock included a different set of covariates from models generated for 

350 the southern stock. Given these differences, results are reported by dependent variable (landings 

351 and CPUE) and stock region (northern and southern). Final RF and GAMM model descriptions 

352 are provided below; additional modeling result details can be found in Supplementary Materials.

353 3.1. Northern stock landings   

354 From the original 49 explanatory variables, the final RF model included 10 variables: annual 

355 AMO (lagged 5–7 years); December to April AMO (lagged 5–7 years); station-based December 

356 to February NAO (lagged 3 and 4 years); PC-based December to February NAO (lagged 4 

357 years), and management time block (Table 1; Figure S3). The final GAMM based on backward 

358 selection of variables included December to April AMO lagged 7 years and station-based 

359 December to February NAO lagged 3 and 4 years (Table 1). The shapes of the relationships 

360 approximated by the RF and GAMM indicate that golden tilefish landings were higher during 

361 negative AMO and positive NAO, with their respective lags (Figures 2 and 3). The largest range 

362 of the smoothed term on the y-axis corresponded with December to April AMO lagged 7 years 

363 (Figures 2 and 3) and this covariate contributed 52.5% of the GAM R2 (Figure 4), implying 

364 AMO has the largest influence on northern landings. In contrast, NAO covariates at lags of 3 and 

365 4 years contributed a combined 47.5% of the GAM R2 (Figure 4).
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366 3.2. Northern stock CPUE

367 The random forest using the full dataset identified 62 significant variables from the original 121 

368 explanatory variables (Table 1), including two versions of the AMO (annual and seasonal with 

369 each lagged 0–7 years), both seasonal versions of PC-based NAO (each lagged 0–7 years), 

370 Labrador Current transport indices (NE Track 191: lagged 0, 4, 9, and 10 quarters), Gulf Stream 

371 index of position anomalies (lagged 0, 1, 4–10, and 12 quarters), Gulf stream position indices 

372 (lagged 0–3 years), Gulf stream transport index (lagged 0–3 years), bottom temperature 

373 anomalies (lagged 0–2, 4–7 years), and time block (Figure S1). The final GAMM for northern 

374 CPUE included four variables: annual AMO lagged 6 years, December to April AMO lagged 7 

375 years, Gulf Stream index of position anomalies lagged 12 quarters, and the Labrador Current 

376 transport index for NE Track 191 unlagged (Table 1; Figure 5). Annual AMO lagged 6 years and 

377 December to April AMO lagged 7 years contributed a combined 64.1% of the GAM R2 (Figure 

378 4). Gulf Stream and Labrador Current transport indices contributed only 19.7% and 16.2%, 

379 respectively, of the GAM R2 (Figure 4).

380 3.3. Southern stock CPUE

381 The RF generated using the full dataset selected 53 out of 54 variables as important (only 

382 December to February NAO lagged 7 years was deemed unimportant; Figure S2). The final 

383 GAMM included 11 variables: time block; December to April AMO lagged 7 years; annual 

384 AMO lagged 2 and 4 years; Florida Current transport index lagged 2, 3, 4, 7, and 11 months; 

385 average monthly SST, and latitude (Table 1, Figure 6). The marginal contributions to the GAM 

386 R2 were spread across a mixture of covariates, namely management time block (23.6%), 

387 December to April AMO lagged 7 years (17.6%), latitude (14.3%), annual AMO lagged 2 and 4 

388 years (14.2%, 13.8%), Florida Current transport index (combined 14.5% across all lags), and 

389 SST (2%; Figure 4). 

390 3.4. Model performance evaluation

391 The evaluation of predictive performance between RF and GAMMs demonstrated that the more 

392 parsimonious GAMMs were able to capture relationships between landings and environmental 

393 covariates better than RF (Table 2). This may be explained by the small size of the dataset and 

394 tendency of RF to over fit the data (Section 15.3.4 in Hastie et al. 2009). RF prediction errors for 
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395 northern CPUE were smaller than of the GAM(M)s, but not substantially smaller compared to 

396 how many more variables were used in the RF. For southern CPUE, the GAMM was able to 

397 outperform RF by producing lower prediction errors.

398

399 4. DISCUSSION

400 We identified several potential environmental drivers of golden tilefish fishery and stock 

401 dynamics, including low frequency climate indices (AMO and NAO), oceanographic currents 

402 (Labrador and Florida Currents and the Gulf Stream), and high frequency oceanographic 

403 conditions (monthly sea surface temperature; Figures 2–5). Similar to Fisher et al. (2014), we 

404 identified a positive, lagged association between historical northern golden tilefish landings and 

405 the NAO (Figures 2–3). Our landings analysis differed from that of Fisher et al. (2014) in that we 

406 considered also the AMO, another potentially influential climate indicator. Over the time series 

407 of landings analyzed (1915–2000), we found the AMO with a lag of 7 years to be more 

408 influential than the NAO (Figures 3, S3, and 4a). While it is likely that the NAO, in concert with 

409 the Labrador Current, played a role in the 1882 die off as indicated in previous studies (Marsh et 

410 al., 1999), golden tilefish landings do not appear to be responding solely to NAO anomalies 

411 (Fisher et al., 2014). Complicating the relationship may be the influence of the AMO which has 

412 been linked to SST and precipitation fluctuations in a unique and complicated manner along the 

413 East Coast of the U.S. (Alexander, Kilbourne, & Nye, 2014) and associated with population 

414 dynamics of several Northwest Atlantic fishes (Buchheister et al., 2016; Midway et al., 2020; 

415 Nye et al., 2014).

416 Given golden tilefish recruit to the fishery around ages 4–5 years (Nesslage, 2016; 

417 Nitschke, 2017), our observed lagged relationships between landings and climate indices suggest 

418 the environment is impacting recruitment rather than adult survival or fisher behavior. Our 

419 findings add to the body of evidence suggesting the AMO has been a bottom-up driver of fish 

420 recruitment dynamics (Nye et al., 2014). However, AMO and NAO climate cycles are likely 

421 working together in a complex way to influence golden tilefish recruitment and subsequent 

422 fishery landings 3–7 years later. Climate variability patterns such as the NAO and AMO often 

423 interact, making it difficult to discern the individual effect of each climate index (Nye et al., 

424 2014). The AMO has been shown to influence both primary production (Martinez, Antoine, 
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425 D’Ortenzio, & Gentili, 2009) and ocean conditions, including winds and currents (Häkkinen, 

426 Rhines, & Worthen, 2011) and storm intensity (Schofield et al., 2008). The significant influence 

427 of AMO on tilefish recruitment indicated by our study would suggest the underlying mechanism 

428 may be AMO-induced fluctuations in primary production and/or impacts on larval transport as 

429 has been suggested for other fishes (Buchheister et al., 2016; Midway et al., 2020; R. J. Wood & 

430 Austin, 2009).

431 We found environmental factors associated with historical landings differed from that of 

432 CPUE. Given the much longer time series of landings relative to the availability of 

433 oceanographic data in both regions, the only covariates common to both landings and CPUE 

434 models were the climate indices. AMO was identified as an influential factor associated with 

435 both northern and southern CPUE, but the NAO was not included in the final, forward-selected 

436 GAMMs of CPUE for either stock, indicating the AMO is a more influential driver of CPUE 

437 (Figures 4b and 4c). In the north, CPUE was positively associated with the AMO at lags of 6–7 

438 years in a largely linear fashion (Figure 5). Southern stock CPUE was positively associated with 

439 the AMO with a similar lag of 7 years, but also at lags of 2 and 4 years and in a more non-linear 

440 fashion (Figure 6). Whereas the AMO was negatively associated with northern landings 7 years 

441 later, the AMO was positively associated with both northern CPUE (lags 6–7 years) and southern 

442 CPUE (lags 2, 4, and 7 years). This discrepancy was likely due to the difference in time series 

443 length between the northern landings model (86 years) and the northern and southern CPUE 

444 models (23 and 24 years, respectively). The longer time series of landings included a wider range 

445 of AMO-associated climate variability as demonstrated by the wider range of x-axis values in 

446 Figures 3 vs Figures 5 and 6. Also, inclusion of early (pre-longline) fisheries in the historical 

447 landings time series could have influenced model results if AMO-driven shifts in target species 

448 or areas fished differed among current and historical fleets; similarly, the northern CPUE time 

449 series included the quota managed time block, which was excluded from the landings time series 

450 analysis.

451 In addition to the AMO, oceanographic currents were found to be associated with both 

452 northern and southern stock CPUE. Southern stock CPUE was associated with seasonal Florida 

453 Current transport, but the direction of that relationship depended on the monthly lag (Figure 6). 

454 Northern stock CPUE was positively related to low Labrador Current flow in the same quarter 
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455 and positive anomalies in Gulf Stream position (GSI) at a lag of 3 years (Figure 5), conditions in 

456 which cold water intrusion into golden tilefish habitat would be minimal (Northeast Fisheries 

457 Science Center, 2020). This general relationship between CPUE and northeastern oceanographic 

458 currents was hypothesized by Marsh et al. (1999) in their proposed explanation of the 1882 die-

459 off event. Since the late 1950s, the position of the northern edge of the Gulf Stream has been 

460 moving northward and the rate of movement has been increasing since 2009 (Northeast Fisheries 

461 Science Center, 2020). If global climate change continues to affect oceanographic currents and 

462 circulation patterns, golden tilefish in the northern stock unit may exhibit a range shift into the 

463 Gulf of Maine in response to northerly movement of the Gulf Stream wall and warming ocean 

464 temperatures (Nye et al., 2014). It is not clear how long golden tilefish have been present in the 

465 Gulf of Maine, but novel catches in a recently developed cooperative Gulf of Maine bottom 

466 longline survey and occasional commercial catches suggest golden tilefish are present to some 

467 degree in isolated locations within the Gulf of Maine (NEFSC, 2019). 

468 It is also worth noting that several oceanographic current covariates in our CPUE models 

469 were lagged seasonally, indicating that fish or fisher behavior may be influenced by 

470 oceanographic conditions (Figures 5-6). Overall, though, CPUE for both stocks was primarily 

471 influenced by covariates that were lagged across multiple years (Figure 4). This suggests that the 

472 environment is primarily affecting current recruitment and that its influence on catchability is 

473 unlikely to be causing a decoupling of northern and southern longline CPUE indices from stock 

474 trends.

475 The southern stock also displayed a strong association with localized monthly SST 

476 (Figure 6). Southern CPUE increased with decreasing SST, possibly indicating the potential 

477 positive impact on stock and fishery performance of upwelling events which are driven by the 

478 intrusion of cold water. Alternatively, CPUE may be high when SST is low because observations 

479 in the CPUE time series span a range of temperatures (Figure 6) that, near the sea floor, are 

480 likely approaching the upper range of golden tilefish’s stenothermic temperature preferences (9–

481 14˚C; Figure S4). A similar decline in CPUE at temperatures >14˚C was observed in fishery-

482 independent surveys conducted in southern waters off South Carolina and Georgia (Barans & 

483 Stender, 1993; Low et al., 1983). We also found that southern stock CPUE increased at latitudes 

484 south of Cape Canaveral, Florida (approximately 28.4˚N; Figure 6), likely due to more suitable 

A
u
th

o
r 

M
a
n
u
s
c
ri
p
t



This article is protected by copyright. All rights reserved

485 bottom temperatures observed at lower latitudes at depths golden tilefish typically inhabit (80–

486 300m; Figure S4). In our study, SST was negatively associated with CPUE in the same month, 

487 which suggests immediate effects of water temperature on behavior and survival of adult fish or 

488 fisher behavior; however, the overall impact of temperature on CPUE index catchability is likely 

489 low given the SST covariate only contributed 2% of the GAM R2 (Figure 4).

490 Although previous studies identified a seasonal pattern in golden tilefish CPUE for the 

491 northern stock (Grimes et al., 1980), we did not find strong evidence for an association between 

492 monthly northern CPUE and SST in this study. The lack of association between CPUE and SST 

493 may be explained by a decoupling between surface temperature and temperature near the sea 

494 floor where adult tilefish are found. Alternatively, latitudinal and temperature effects on CPUE 

495 may not have been as evident in the northern stock because the stock is concentrated in a 

496 relatively small number of NMFS statistical areas that do not span as wide a geographic area as 

497 the southern stock (Figure 1; Nitschke, 2017). In general, CPUE data available for use in this 

498 study were limited in spatiotemporal resolution to monthly reporting at the NMFS statistical area 

499 level, which may have affected our ability to identify other potential high frequency ocean 

500 condition drivers for both stocks. In addition, previous studies linking water temperature and 

501 seasonal CPUE (Grimes et al., 1980) were conducted in the 1970s when the northern stock was 

502 lightly exploited such that the effect of colder seasonal temperatures may have resulted in a 

503 larger overall population effect than in recent decades. Another complicating factor is increased 

504 and prolonged presence of spiny dogfish (Squalus acanthias) in golden tilefish habitat in recent 

505 decades during the winter and spring has led to lower golden tilefish catches and increased effort 

506 by fishers in an effort to avoid dogfish concentrations, a development that further complicates 

507 interpretation of abiotic environmental effects at small spatiotemporal scales in the north 

508 (MAFMC, 2020). Finally, increasing bottom temperatures due to climate change (Northeast 

509 Fisheries Science Center, 2020) may have lessened the observed influence of water temperatures 

510 on northern tilefish CPUE in recent years.

511 Although oceanographic currents and ocean conditions were associated with golden 

512 tilefish CPUE at a monthly to annual time scale, climate indices (AMO and NAO) appeared to 

513 be associated with stock (CPUE) and fishery (landings) dynamics at longer lags of 3-7 years, 

514 indicating their primary impact was on recruitment strength as opposed to within-year adult 
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515 survival or fisher behavior. Climate conditions could be influencing golden tilefish larval 

516 transport and settlement success or quality of juvenile habitat. Cyclical patterns in estimated 

517 recruitment have been observed in both stock assessments with more pronounced regularity in 

518 the north, indicating environmental influences on stock productivity (Figure S5). However, 

519 almost nothing is known about the early life stages of this species because current 

520 ichthyoplankton surveys on the U.S. East Coast do not encounter golden tilefish frequently 

521 enough to inform trends in larval and juvenile tilefish for either stock (pers. comm. Harvey 

522 Walsh). Stakeholders, managers, and scientists are keenly interested in identifying the 

523 mechanism behind these recruitment cycles that sustain the golden tilefish fishery. Based on the 

524 high accuracy of some of our CPUE models and their efficient use of leading indicators (lagged 

525 covariates that can be used to predict CPUE several time steps in the future, without the need to 

526 forecast the covariates themselves), our study shows promise for development of predictive 

527 models of tilefish stock dynamics. This study lays the groundwork for future research on early 

528 life history of golden tilefish and improved methods for better incorporating recruitment 

529 uncertainty in stock assessment projections used in management.
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727 FIGURE AND TABLE LEGENDS

728 Figure 1. Map of the golden tilefish management boundary separating northern and southern 

729 stocks on the US East Coast and NMFS statistical areas used for commercial catch and effort 

730 reporting.

731 Figure 2. Partial dependence plots estimated based on the random forest for northern landings of 

732 golden tilefish. See Table 1 for description of environmental factor abbreviations. Covariate time 

733 lags are described in parentheses as time of estimate (t) minus lag in years (y) or months (m).

734 Figure 3. Estimated smoothing curves for the GAMM of northern landings of golden tilefish. 

735 The tick marks on the inner horizontal axis denote positions of the observations; the dashed lines 

736 correspond to confidence bounds of ± 2 standard errors. See Table 1 for description of 

737 environmental factor abbreviations. Covariate time lags are described in parentheses as time of 

738 estimate (t) minus lag in years (y).

739 Figure 4. Shapley–Owen decomposition of GAM coefficients of determination (R2). See Table 1 

740 for description of environmental factor abbreviations. Covariate time lags are described in 

741 parentheses as time of estimate (t) minus lag in years (y), months (m), or quarters (q).

742 Figure 5. Estimated smoothing curves for the GAMM of northern stock CPUE for golden 

743 tilefish. The tick marks on the inner horizontal axis denote positions of the observations; the 

744 dashed lines correspond to confidence bounds of ± 2 standard errors. See Table 1 for description 

745 of environmental factor abbreviations. Covariate time lags are described in parentheses as time 

746 of estimate (t) minus lag in years (y) or quarters (q).

747 Figure 6. Estimated smoothing curves for the GAMM of southern stock CPUE. The tick marks 

748 on the inner horizontal axis denote positions of the observations; the dashed lines correspond to 

749 confidence bounds of ± 2 standard errors. See Table 1 for description of environmental factor 

750 abbreviations. Covariate time lags are described in parentheses as time of estimate (t) minus lag 

751 in years (y) or months (m).

752

753 Table 1. Covariates explored (denoted with an X) and selected (denoted with "*") in random 

754 forests (RFs) and generalized additive mixed models (GAMMs) of golden tilefish landings and 
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755 catch-per-unit-effort (CPUE) for both northern and southern stocks. Covariate time lags are 

756 described in parentheses.

757 Table 2. Prediction mean absolute error (PMAE) and prediction root mean square error 

758 (PRMSE) in units of  for the northern golden tilefish landings models and  for ����� ������/���
759 northern and southern catch-per-unit-effort (CPUE) models. Testing set size was 26 (1959–1970 

760 and 1987–2000) for northern landings, 74 (2011–2013) for northern CPUE, and 318 (2011–

761 2017) for southern CPUE models.
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763 TABLES

764 Table 1. Covariates explored (denoted with an X) and selected (denoted with "*") in random forests (RFs) and generalized additive 

765 mixed models (GAMMs) of golden tilefish landings and catch-per-unit-effort (CPUE) for both northern and southern stocks. 

766 Covariate time lags are described in parentheses.

767

GAMM GAMM GAMM
Name Description Full Final Final Full Final Final Full Final Final

NAO_DJF_st Station-based index of the North 
Atlantic Oscillation, Dec–Feb (0–7 
years)

X *
(3, 4 years)

*
(3, 4 years)

NAO_DJF_PC Principle component-based index of the 
North Atlantic Oscillation, Dec–Feb 
(0–7 years)

X *
(4 years)

X *
(0–7 years)

X *
(0–6 years)

NAO_DJFMA_st Station-based index of the North 
Atlantic Oscillation, Dec–Apr (0–7 
years)

X

NAO_DJFMA_PC Principle component-based index of the 
North Atlantic Oscillation, Dec–Apr 
(0–7 years)

X X *
(0–7 years)

X *
(0–7 years)

AMO_annual Annual Atlantic Multidecadal 
Oscillation index (0–7 years)

X *
(5–7 years)

X *
(0–7 years)

*
(6 years)

X *
(0–7 years)

*
(2, 4 years)

AMO_DJFMA Atlantic Multidecadal Oscillation index, 
Dec–Apr (0–7 yrs)

X *
(5–7 years)

*
(7 years)

X *
(0–7 years)

*
(7 years)

X *
(0–7 years)

*
(7 years)

Track_NE191 Index of Labrador Current surface (200 
m) volume transport at OPEX/Poseidon-
Jason Track NE191 (0–12 quarters)

X *
(0,4,9,10 
quarters)

*
(0 quarters)

Track_226 Quarterly index of Labrador Current 
surface (200 m) volume transport at 
OPEX/Poseidon-Jason Track 226 (0–12 
quarters)

X

Northern landings
RF RF RF

Northern CPUE Southern CPUE

768

769 Table 1(cont’d).
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770

GAMM GAMM GAMM
Name Description Full Final Final Full Final Final Full Final Final

Track_48 Quarterly index of Labrador Current 
surface (200 m) volume transport at 
OPEX/Poseidon-Jason Track 48 (0–12 
quarters)

X

Track_SW191 Quarterly index of Labrador Current 
surface (200 m) volume transport at 
OPEX/Poseidon-Jason Track SW191 
(0–12 quarters)

X

GSI Quarterly index of anomalies in Gulf 
Stream position (0–12 quarters)

X *
(0,1,4–10,12 

quarters)

*
(12 quarters)

GSNW Annual index of Gulf Stream position 
along the north wall (0–3 years)

X *
(0–3 years)

GSD Annual index of Gulf Stream transport 
along the north wall (0–3 years)

X *
(0–3 years)

FC_Transport Monthly index of daily mean transport 
in the Florida Current (0–12 months)

X *
(0–12 

months)

*
(2–4,7,11 
months)

avgP Average monthly sea level pressure X X *
avgSST Average monthly sea surface 

temperature
X X * *

avgU Average monthlyvector wind northward 
component

X X *

avgV Average monthly vector wind  eastward 
component

X X *

avgW Average monthly scalar wind X X *
BTMPanom Annual index of bottom temperature 

anomalies in the Mid-Atlantic Bight 
(0–7 years)

X *
(0–2,4–7 

years)
Time_block Management/fishery time block X * X * X * *

Area NMFs statistical reporting area X
AREA_CENT_LAT Centroid latitude of Area X * *
AREA_CENT_LON Centroid longitude of Area X *

Month Month X X *

Northern landings Northern CPUE Southern CPUE
RF RF RF
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771 Table 2. Prediction mean absolute error (PMAE) and prediction root mean square error 

772 (PRMSE) in units of  for the northern golden tilefish landings models and  for ����� ������/���
773 northern and southern catch-per-unit-effort (CPUE) models. Testing set size was 26 (1959–1970 

774 and 1987–2000) for northern landings, 74 (2011–2013) for northern CPUE, and 318 (2011–

775 2017) for southern CPUE models.

Northern

Landings
Northern CPUE Southern CPUE

Model

PMAE PRMSE PMAE PRMSE PMAE PRMSE

RF 8.18 10.50 5.91 7.16 8.70 10.40

GAMM 6.68 8.36 6.22 7.60 7.62 9.62

GAM (GAMM without 

random effects)

7.82 9.85 6.66 7.86 8.06 10.20

776
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782

783 Figure 1. Map of the golden tilefish management boundary separating northern and southern 

784 stocks on the US East Coast and NMFS statistical areas used for commercial catch and effort 

785 reporting. A
u
th

o
r 

M
a
n
u
s
c
ri
p
t



This article is protected by copyright. All rights reserved

786

787 Figure 2. Partial dependence plots estimated based on the random forest for northern landings of 

788 golden tilefish. See Table 1 for description of environmental factor abbreviations. Covariate time 

789 lags are described in parentheses as time of estimate (t) minus lag in years (y) or months (m).

790

791

792

793 Figure 3. Estimated smoothing curves, s, for the GAMM of northern landings of golden tilefish. 

794 The curves are centered at 0; the dashed lines correspond to confidence bounds of ± 2 standard 

795 errors. The tick marks on the inner horizontal axis denote observed values of the covariates. See 
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796 Table 1 for description of environmental factor abbreviations. Covariate time lags are described 

797 in parentheses as time of estimate (t) minus lag in years (y).
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799

800

801

802 Figure 4. Shapley–Owen decomposition of GAM coefficients of determination (R2). Gray shading highlights one variable shared by 

803 all three models, namely December to April AMO with a 7-year time lag. See Table 1 for description of environmental factor 

804 abbreviations. Covariate time lags are described in parentheses as time of estimate (t) minus lag in years (y), months (m), or quarters 

805 (q).
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807

808

809 Figure 5. Estimated smoothing curves, s, for the GAMM of northern stock CPUE for golden 

810 tilefish. The curves are centered at 0; the dashed lines correspond to confidence bounds of ± 2 

811 standard errors. The tick marks on the inner horizontal axis denote observed values of the 

812 covariates. See Table 1 for description of environmental factor abbreviations. Covariate time lags 

813 are described in parentheses as time of estimate (t) minus lag in years (y) or quarters (q).

814
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817

818 Figure 6. Estimated smoothing curves, s, for the GAMM of southern stock CPUE. The curves 

819 are centered at 0; the dashed lines correspond to confidence bounds of ± 2 standard errors. The 

820 tick marks on the inner horizontal axis denote observed values of the covariates. The estimated 

821 coefficient for categorical variable Time_block (pre-closures) is –6.679 (standard error 0.979). 

822 See Table 1 for description of environmental factor abbreviations. Covariate time lags are 

823 described in parentheses as time of estimate (t) minus lag in years (y) or months (m).
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